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SUCCESS IN IMPLEMENTING CONTROL of monetary aggre-
gates requires stable asset demand functions. In the United Kingdom, aggregate
studies established a stable demand for narrow money, M1 (for example, Hendry
1979, 1985), over the 1970—1984 period, but this has proved more problematic
when incorporating data for the late 1980s (Hall, Henry, and Wilcox 1990). There
have been even more acute difficulties in finding a stable demand function for U.K.
broad money for the private sector (see Goodhart 1989 for a survey). One possible
explanation for such instability is aggregation over heterogenous agents (Bank of
England 1986). We seek to throw some light in this issue by examining the asset
demands of the U.K. company sector. The aim of this paper is to assess how far a
particular theoretical model based on the “money in the utility function approach”
can explain the behavior of liquid asset holdings of the U.K. company sector, using
quarterly data. There is a voluminous applied literature on the demand for financial
assets of the nonbank private sector (for example, Laidler 1977, 1980; Serletis and
Robb 1986; Ewis and Fisher 1984; Perraudin 1987; Backus et al. 1980; Feige and
Pearce 1987; Christensen, Jorgenson, and Lau 1975; Rose 1985) but applied work,
in our view, has largely neglected a systems approach to the asset decisions of the
company sector (but see Jackson 1984).

Long-run asset demands are based on the AIDS model (Deaton and Muellbauer
1980) and are estimated using cointegration techniques, while in the “second stage”
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84 : MONEY, CREDIT, AND BANKING

we apply the “general to specific” methodology in a systems framework. The meth-
odology adopted allows one to “search over” alternative short-run specifications
independently of the theoretically acceptable long-run cointegrating relationships.
In particular our dynamic AIDS model allows one to test the theoretical restrictions
of homogeneity, symmetry, and negativity which must hold if the behavior of the
representative agent is to conform with the basic axioms of rational choice (for
example, transitivity). We find that with a suitably flexible dynamic structure we
obtain demand functions for company sector short-term assets that satisfy the the-
oretical restrictions implied by the AIDS model, are intuitively plausible, and exhib-
it parameter stability. The rest of this paper is organized as follows. In section 1 we
outline the theoretical model and in section 2 we consider the modeling of short-run
dynamics in a systems framework and associated econometric problems. In section
3 we discuss data problems and in section 4 we present our empirical results. We
conclude with a brief summary.

1. THE AIDS MODEL

We assume multistage budgeting within the firm. “Higher level” decisions con-
cerning employment, inventories, investment, dividends, etc. are taken
independently of decisions about the distribution amongst liquid assets. This as-
sumption of weak separability appears reasonable in the U.K. context where finan-
cial portfolio decisions are largely managed by Corporate Treasurers. It also makes
the model tractable.

The representative agent is assumed to distribute wealth among alternative assets
in order to minimize the cost of achieving a given level of utility.! The axioms of
rational choice in demand theory (that is, the existence of consistent preferences) are
met providing we choose a cost function that is concave and homogeneous of degree
one in prices.? Of the several flexible functional forms available we select the
PIGLOG (Price Independent Generalized Logarithmic) which, in common with oth-
ers [for example, indirect translog (Christensen et al. 1975)] is a second-order ap-
proximation. Within the PIGLOG class we choose the AIDS cost function (Deaton
and Muellbauer 1989).

The budget constraint is

2 P, = Wr (1)
i

!One can argue that ultimately utility depends only on current and future consumption. However, in
the absence of fully contingent binding contracts, when saving takes place, agents must hold some asset
stocks, and it is reasonable to assume that agents are not indifferent to the composition of their assets.
Hence asset holdings represent purchasing power over future consumption goods. Friedman (1956)
discusses the theory of asset demands based on utility and Barnett (1980) develops these ideas in a more
rigorous framework.

2The cost function is also usually assumed to be continuous in prices and that the first and second
derivates with respect to prices exist.
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where p,, = [(1 + r;,) (1 — g)]~1; r;, = expected (proportionate) nominal return on
asset i, between 7 and ¢ + 1 (including any capital gains); g, = expected ( proportion-
ate) rate of goods price inflation between f and 7 + 1; af,, ; = real asset holdings
at end of period t + 1, (= a,,, /2, ,); a; = nominal asset holdings of the ith as-
set at end of period ¢; Z, = goods price index; W = real wealth at end of period ¢,
(=W,J/Z).

Solving the constrained cost minimization problem leads to the AIDS share equa-
tions (see, for example, Barr and Cuthbertson 1991; Weale 1986):

(= o+ 2 vy Inpy, + By In (Wi/PY), )

J

where s; = (a;/W)), In P¥ = 2 §, Inp,,. Note that In P} may be interpreted as a
composite real discount factor (s; are the sample mean shares). The AIDS share
equations are linear in the parameters whereas the share equations from the indirect
translog utility function are nonlinear. The AIDS model is therefore far more tracta-
ble when we seek to incorporate and interpret the coefficients of an interdependent
dynamic adjustment process (see section 2). The theoretical restrictions of the AIDS
model are as follows. The adding up constraints:

Z_a,.=1, E_y,,:o, ZB,:O (3a)
Homogeneity:

2 Yij = 0 (3b)

J

Symmetry and negativity (of the Hicksian demand functions) are direct conse-
quences of the axioms of rational choice. The former implies

Yii = Yji (3¢)

Negativity arises from the concavity of the cost function and implies that the matrix
of coefficients k;:

k; = vy T BB In(W*/P*) — 58, + 5,5 (3d)

is negative semidefinite (Sij is the Kronecker delta).

Thus our systems approach implicitly imposes data admissibility in the form of
adding up constraints and the additional theoretical constraints of symmetry, homo-
geneity, and negativity. If symmetry and homogeneity hold, then this reduces the
number of parameters to be estimated and increases efficiency. One might also wish
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to judge the model on more intuitive notions, (for example, that own price effects
are negative, wealth elasticities are “reasonable,” etc).
The wealth and compensated own-price and cross-price elasticities are

E,=@®Bi/s)+1; (4a)
E;j(p)=(s) k. (4b)

The semielasticities of asset holdings with respect to the annual percentage rate of
return R (that is, r = R/400) are

E,j(R) = Eij(P)/4 . (4c)

2. DYNAMIC ADJUSTMENT AND ECONOMETRIC ISSUES

The share equations (2) from the constrained maximization problem we designate
as desired long-run shares s¥ which may be represented in vector notation:

st = IIX, (5)

s; = k X 1 vector of desired long-run asset shares, X, = g X 1 vector of indepen-
dent variables, I = k X ¢ matrix of long-run parameters. The adjustment of actual
shares s, to desired long-run shares is assumed to operate via a generalized error
feedback mechanism (Brainard and Tobin 1968; Smith 1975; Anderson and Blun-
dell 1983):

As, = TI*AX, + L (s — s%), , + €, 6)

where the disequilibria in (k — 1) asset shares at time t — 1 influence the current
period adjustment of any particular asset share. Since 2k (s; —s7),—, = 0, only
(k — 1) independent disequilibrium shares are required in (7) [that is, L is
(k X (k — 1)]. Adding-up restrictions imply that the columns of IT* and L sum to
zero. The system is dynamically stable if the eigenvalues of the appropriate adjust-
ment matrix have modulus less than unity.3

Prior to the use of cointegration techniques estimation of (6) would have pro-
ceeded by running the unrestricted set of equations (u, is a white noise error term):

S,=RIS,_1+R2X,+R3X,_I+Il,. (7)

3If the disequilibrium term for asset 1 is excluded, then the estimated adjustment matrix is L =
(3,13, . . . b) where L is kx(k — 1). The dynamics of the full model may be written s = (I, + L*)s,_,,
where, s, is (k X 1), L* = (0, I, I3, . . . I,) is (k X £,0=(0,0...0)is(kX 1), and I; = (k x k)
identity matrix. One of the eigenvalues of (I + L*) is unity and stability requires that the other (k — 1)
eigenvalues have negative real parts.
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The main disadvantages of this approach are as follows. First, in testing down to a
parsimonious dynamic representation (via restrictions on the R; matrix elements)
one implicitly alters the long-run solution, and the final equation (possibly after
considerable “search-time” has been invested) may be unacceptable on a priori
grounds. Second, we cannot be sure that the ensuing long-run solution yields a
cointegrating vector or that there is a cointegrating vector among the set of variables
included in (6). Third, in the absence of cointegration the usual test statistics in (6)
do not apply (Engle and Granger 1987). Fourth, long-run theory restrictions (for
example, symmetry and homogeneity) are often not imposed (for instance, Weale
1986) although procedures are available (see Bewley 1979). For the above reasons
we think it worth exploring a systems approach using cointegration techniques.

Cointegration establishes a parameter vector which yields stationary I(0) errors
(Granger 1986; Engle and Granger 1987). Assuming all variables in the long-run
share equations (5) are integrated of order one I(1), and yield a cointegrating vector,
then in the “first-stage” regression, OLS on (5) (using actual shares s,) yields super-
consistent estimates, of IT (Stock 1984). The residuals from (k — 1) of the coin-
tegration equations (s; — $;) are then substituted into the dynamic system error-
feedback equations (6) (Hall 1986). In equation (6), As, and AX, are stationary I(0)
variables by construction while the individual elements of the vector (s — s*), _, are
also 1(0) because we have established cointegrating vector IT in the stage-one re-
gressions. Hence by the Granger representation theorem (Engle and Granger 1987)
there exists an error-correction representation of the form (6) and the usual test
statistics apply (Engle and Granger 1987). The “general-to-specific” methodology
(Hendry 1989) may be applied in the “second stage” to obtain parsimonious dy-
namic equations while holding the long-run parameters fixed (Hendry, Pagan, and
Sargan 1984). Although attractive, there are some practical problems with the two-
step procedure. The cointegration regression estimates may suffer from small sam-
ple bias (Hendry 1986) and the cointegrating vector may not be unique. However,
given the relatively strong theoretical restrictions to be placed on the long-run share
equations (for example, homogeneity and symmetry, negative own “price” effects),
we are mainly interested in finding a set of plausible parameter estimates that con-
form to theory and form a cointegrating vector. We are therefore willing to risk
some small sample bias at stage one (and possibly an inferior fit of the final equa-
tion) in order to obtain a theoretically consistent approach. We therefore adopt an
informal approach, trading off fit in the second-stage regressions against the system
restrictions implied by our theoretical model. The final parsimonious system of
equations is subject to the usual test procedures (Hendry 1985).

In order to impose cross-equation restrictions on the long-run parameters we use
maximum likelihood with a diagonal covariance matrix (obtained form running
OLS on each equation separately). When estimating the dynamic short-run equa-
tions we report results using 3SLS (Zellner and Theil 1962). Corrections for serial
correlation in systems of equations are not possible with our current software
(Berndt and Savin 1975) but because of our flexible lag response this was not found
to be an acute practical problem.
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Restrictions on parameters are tested using Wald tests and a quasi-likelihood ratio
test statistic QLR. When using IV the usual likelihood ratio test (Gallant and Jorgen-
son 1979) is QLR = T (Q, — Q,), where Q, (Q,) is the value of the minimum
distance criterion for the null (maintained) hypothesis; 0 = e’ (X~ ! X N) e, where
b = vector of parameters, ¢ = a stacked vector of residuals, with variance-
covariance matrix X and projection matrix of instruments N). When using QLR, the
same set of instruments must be used under both H, and H, and £ must be held
fixed at its value under the maintained hypothesis.

In testing parameter constancy we have used a systems analogue to the Salkever
(1976) test which allows the use of a fixed instrument set and fixed variance
covariance matrix. For testing parameter constancy over r additional periods we
augment each equation with r (. . . 0, 1,0 . . . ) dummies. The coefficients and ¢-
statistics on the dummies then yield estimates of the outside sample forecast errors
and their statistical significance. A Wald test on all the dummies yields an
asymptotically valid test of the parameter stability in the system as a whole. The
dummies are included in the instrument set.

3. DATA USED

We use quarterly data and the asset categories modeled are the following “short-
term” assets of the company sector: M1 = transactions balances (= notes and coin
+ sterling sight deposits); TD = time deposits (= sterling time deposits + building
society deposits + local authority temporary debt); PSD = public sector debt (Brit-
ish Government Securities, Northern Ireland Central Government Long-Term Debt
and Treasury Bills); FCD = foreign currency deposits.

In order to apply the above model to the company sector we delineate the problem
by assuming decisions concerning the portfolio of short-term assets are weakly sep-
arable from other asset decisions (and real decisions). We also assume weak inter-
temporal separability. Evidence in Mayer (1988) and Chowdhury, Green, and Miles
(1987) suggests that our asset split may be a reasonable working hypothesis.

The flow data is taken from the Flow-of-Funds matrix in Financial Statistics.
Revaluation indices are chosen to be consistent across sectors of the complete ma-
trix. Benchmark stocks are then chosen such that all elements in the matrix satisfy
the accounting identities (that is, zero-row sums and column sums equal to the
NAFA). The data on company sector assets used here therefore comes from a fully
consistent complete stock-flow matrix. Data on the sight-time deposit split is only
available from 1975 (III).

The mean shares for our asset categories over the period 1977-86 are M1 (23
percent), TD (55 percent), PSD (5 percent), FCD (17 percent). However, there has
been a relatively large secular fall in TD from 63 percent in 1977 to around 48
percent in 1986 and this mirrored by the rapid rise in FCD after 1979 from a share of
8 percent to 23 percent by 1983/4. Tax instruments were initially included in the
asset set but proved problematic, probably because of the complexity of the “true”
rate of return (see Jackson 1984). The rate of return on M1 is the negative of the
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expected inflation rate (of the price of total final expenditure, TFE) and for TD
the own rate is taken to be the rate on “parallel money market” assets, namely, the
three-month rate on Local Authority bills. Various rates of return for PSD and FCD
were tried, all of which included the running yield and capital gains. The running
yield plus a three-year backward-looking capital gain is used for the return on PSD
and FCDs. The F-T actuaries price index for all government stock and the running
yield are used for PSD while the return on FCD is the yield on three-month dollar
deposits in London plus capital gains due to changes in the dollar-sterling exchange
rate. (One-quarter-ahead and one-year-ahead capital gains variables were also tried
but gave very unsatisfactory results.) All rates of return are net of the marginal
corporate tax rate.

The “static” cointegrating equations can be estimated by OLS (Stock 1987) but
the second-stage regressions are estimated by 3SLS (see below) using “errors in
variables” for expectations variables (for example, inflation) and instruments for
current-period AIDS prices and wealth. All data used are seasonally unadjusted but
seasonal dummy coefficients are not reported. The regressions are run over the
period 1976.1V-1986.1V. Critical values of test statistics are given at a 5 percent
significance level (unless stated otherwise).

4. EMPIRICAL RESULTS

The long-run AIDS share equations are given in equation (2) and we first estab-
lish the order of integration of the variables. Phillips and Perron (1988) provide tests
for unit roots which are robust to a wide variety of serial correlation and time-
dependent heteroskedasticity and also allow for the possibility of a deterministic as
well as a stochastic trend in the data.?

The Phillips-Perron tests involve OLS regressions of the form

Y. =¥ +a*y,_, +uf ®
yy=R+BE—n2)+ay,_, +a 9)

where the error terms are stationary ARMA processes (possibly) with time-depen-
dent variances (+ = time trend and n = number of observations). The null
hypotheses of a unit root, with or without drift, that is, H}:o* = 1 and Hi:p* =0,
a* = 1, are tested against the stationary alternatives by means of the adjusted ¢- and

4Schwert (1987, 1988) notes some deficiencies in both the Dickey-Fuller (Dickey-Fuller 1979) and
Phillips-Perron tests in the presence of large positive moving average parameters. Perron (1989) notes the
difficulties of distinguishing between (i) deterministic trend process with a regime shift and (ii) a
stochastic trend. Strong a priori assumptions concerning the timing of the regime shift are required.
Although the shares s, are I(1) in the data set considered, there is a theoretical problem in that shares are
bounded. The tests used are for a random walk which is a particular case of a nonstationary I(1) series.
Clearly shares cannot follow a random walk (which is unbounded) but they may be nonstationary. Similar
practical difficulties arise with variables such as bilateral exchange rates (which are bounded below) and
the percentage unemployed, when applying unit root and cointegration tests. We are grateful to the
referees for helping to clarify our views on this issue.
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TABLE 1
PHILLIPS-PERRON TESTs FOR UNIT ROOTS

Z(ta®) Z(d) Z(t&) Z(dy) Z(®d,)
s, (M) -1.8 2.7 -2.1 2.5 1.6
s, (TD) -1.8 3.0 2.6 3.9 3.1
53 (PSD) -2.0 3.5 -2.5 4.6 3.1
54 (FCD) -1.1 1.1 ~1.4 1.1 1.5
In (W/P*) 0.9 2.1 —-1.1 1.9 2.5
Inp, -2.2 2.7 -3.0 5.5 3.7
Inp, -2.1 3.0 -3.0 6.2 4.2
Inp, -2.2 35 -2.8 4.2 3.6
Inp, -1.5 1.1 -1.3 1.1 0.7
As, -8.6 37.0 —8.5 36.2 24.2
As, -7.2 25.5 -7.2 26.0 17.3
As, —-6.4 20.8 -6.7 22.3 14.9
As, -6.6 214 —6.6 21.4 14.3
Aln (W~/P*) -52 13.4 -5.5 15.1 10.1
Alnp, -7.5 27.6 -7.3 26.7 17.8
Alnp, —8.5 354 —8.3 33.9 22.
Alnp, —8.6 36.9 —8.6 36.9 24.6
Alnp, -6.8 22.9 -6.7 22.4 15.0

Note: The critical values at 5 percent significance level (see Dickey and Fuller 1979) for the test statistics in columns 1 to 5 are —2.86,
4.86, —3.4,6.73,5.13, respectively. If the absolute value of the test statistic exceeds its critical value then we reject the null hypothesis of a
unit root.

F-statistics Z(tra*) and Z(®,) (Table 1). Equation (9) allows for a deterministic trend
and the null hypotheses, H3:6 = 1; H4B = 0, & = 1; and Hip=8=0,a=1are
tested using Z(z,), Z(P,), and Z(®,) respectively.

With equation (8) or (9) as the maintained hypotheses we cannot reject the null
hypothesis that all the data series in Table 1 for the levels of the variables contain a
unit root [that is, are at least I(1)]5 ata 5 percent significance level. However, the
test statistics reported in the lower half of Table 1 imply that we easily reject the null
hypothesis that the first-difference in the variables are nonstationary. We take these
results to indicate I(1) variables.

Below, we first present our preferred equations and their economic interpretation.
We then discuss general-to-specific tests of the model, tests of parameter stability,
and other variants considered.

Long-Run Share Equations

The preferred long-run share equations with symmetry and homogeneity imposed
are shown in Table 2. The parameters of the AIDS model are not readily interpreta-
ble in terms of the usual economic concepts (for example, elasticities) but the fol-
lowing general features are of interest.

SThe lag length for the order of the moving average component of the error term is taken to be 2 in
Table 1. The results are very similar for lag lengths m = 1 to 4.
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TABLE 2
LONG-RUN COEFFICIENTS: HOMOGENEITY AND SYMMETRY IMPOSED
Price Matrix

g4 Inp, Inps Inpy In (W/P*)
s, (M1) 0.94 (1.0) —0.87 (1.3) —0.94 (3.0) 0.87 (3.5) —0.05 (2.8)
s, (TD) —0.87 —1.12 (1.8) 1.43 (5.6) 0.56 (1.6) —0.15 (5.3)
s; (PSD) -0.94 1.43 —0.64 (3.5) 0.15 (1.4) —0.04 (5.4)
s, (FCD) 0.87 0.56 0.15 —1.58 (3.4) 0.24 (6.7)

CH DFz Z(T&) Z(t) BP(1)b BP(4)®
s, (M1) —0.35 -3.2 -3.2 =3.1 0.8 6.1
s, (TD) —-0.23 -2.7 -2.6 -2.5 6.1 9.7
s, (PSD) —0.41 -33 -33 -33 6.2 13.7
s, (FCD) —-0.14 -2.1 —-2.4 -2.1 4.9 12.4
NOTES: #-statistics are in parentheses but these are not distributed as a students’ r-distribution. They cannot be used for hypothesis testing.
28, is the coefficient in the regression Ae;, = ©; ¢;,_;, where ¢; = residuals from the coi i ion. The Z(1&) and Z(s3)

statistics are the Phillips-Peron (1988) tests for a unit root in the residuals for lag length m = 4: the tests therefore aliow for moving average
errors up to order 4. Z(¢&) is the Phillips-Perron adjusted ¢-statistic for a unit root in the residuals in equation (2) in the text, with a* = 0
imposed: Z(z3) has a* # 0. (Results are qualitatively unchanged for lag lengths m = 1-4.) The critical values for the DF, Z(+4) and Z (1)
statistics at a 10 percent significant level are approximately —4.3. These are based on simulation (Engle and Yoo 1987). .

bBP (k) is the Box-Pierce statistic for serial correlation of order | to k. Under the null of no serial correlation it is asymptotically distributed
as central chi-squared with k degrees of freedom. Critical values at 5 percent significance level are x2(1) = 3.8, x2(4) = 9.5.

a. The own-rate price coefficients for TD, PSD, FCD, and v,; are all negative.
The vy; (i # j) for TD, PSD, and FCD are positive indicating these assets are
substitutes.

b. Except for the equation for M1, the Box-Pierce, BP(1), statistics indicate se-
vere first-order serial correlation in these “static” cointegrating regressions.
Hence these r-statistics cannot be used for hypothesis testing (and merely give
an indication of the relative contributions of the independent variables to
movements in the dependent variable).6

¢. The matrix of k;; coefficients [see equation (3d)] evaluated at mean values of
variables has all eigenvalues negative and is therefore negative semidefinite.

The results without imposing any restrictions on the I' matrix are qualitatively
similar to those reported above except for vv,, which is positive. The Dickey-Fuller
(DF) tests for the four unrestricted equations are —5.0, —5.0, —4.1, and —4.6 and,
given a critical value of —4.3 (at 10 percent significance level), strongly suggest the
presence of a cointegrating vector for each equation. Imposing symmetry and ho-
mogeneity yields y,, < 0 (Table 2) and therefore “improves” the cointegrating
vector on a priori grounds (we test this restriction below). However, imposing these
restrictions weakens the case for a set of cointegrating vectors since the DF and
Phillips-Perron tests are now below their critical values (Table 2).7 These statistics

6West (1988) provides a correction for the t-statistics from a single cointegrating regression but this
may not be applicable here because not all of the variables have a nonzero drift parameter, and we are
dealing with a system of equations.

7Under the null of a random walk the cointegrating Durbin Watson (CRDW) statistic is uniformly
most powerful (against a stationary Markov process). The CRDW statistics for equations (1)-(4) of Table
2 are 0.35, 0.23, 0.41, and 0.14 and the critical value at a 10 percent significance level is about 0.35
(Engle and Yoo 1987). The latter results are indicative of stationary residuals (but not definitive) as are
the correlograms which all have (absolute) values below 0.1 at lag lengths 6 to 16. Lack of a definitive
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TABLE 3
LoNG-RUN ELASTICITIES

ga R, Ry R, Wealth*
1. M1 0.98 0.77 0.97 —0.95 0.78
2. TD -0.39 0.63 —0.67 —-0.30 0.72
3. PSD -4.7 ~-7.2 3.40 -0.79 0.20
4. FCD 1.3 -1.0 -0.23 2.5 2.4

Nortes: The first four columns show the effect of a one percentage point change in g2 (the annual inflation rate), and annual rates of return
R, (i = 2, 3, 4) on the percentage change in asset holdings (that is, (Aa,/a;)*100).
*Wealth elasticity [that is, (Aa,/a,) (AW/W)-1].

have low power against highly dynamic stationary alternatives (Hendry 1986; Hen-
dry and Ericsonn 1988) and we therefore use these statistics as a “useful guide to
decide when to impose the cointegration constraint” (Engle and Yoo 1987, p. 159).
On balance, we therefore proceed under the assumption that the model in Table 2
yields a set of cointegrating vectors that are also acceptable on a priori grounds.8

Long-Run Elasticities and Semielasticities

The semielasticities with respect to rates of return and the wealth elasticities are
shown in Table 3. The own rate semielasticities of TD, PSD, and FCD are 0.63,
3.4, and 2.5, respectively. At higher rates of inflation there is a net move out of total
domestic assets and into FCD. Higher inflation may imply a lower expected sterling
exchange rate and hence a higher expected return on FCD which may not have been
picked up by our backward-looking price variable for FCD. In terms of the change
in the absolute level of asset holdings a major switch at high rates of inflation is out
of PSD and into FCD (Table 4, column 1): there is hardly any net switching out of
total domestic capital certain assets M1 and TD (although the positive coefficient on
M1 is somewhat counterintuitive). A rise in the return on TD leads to a switch out of
PSD and FCD and into M1 and TD (Table 4, column 2). PSD and M1 are comple-

conclusion using unit root tests in finite samples often occurs in applied work [see, for example, Hendry
and Ericsonn (1988) and Blanchard (1989, p. 1151) who states that “results . . . must be seen as depen-
dent on a priori assumptions on the time series properties of the series”]. Note that the existence of a
dynamic error correction model requires cointegration between the levels of I(1) variables and vice versa
(Engle and Granger 1987). Hence the statistical acceptability of the final dynamic error correction model
is also an indirect test of cointegration. Ultimately one’s choice of model is an amalgam of a priori views
and statistical evidence from the cointegrating regression and the dynamic error correction model.

8Further evidence on the existence of a cointegrating set of variables may be obtained from Johansen’s
(1988) maximum likelihood estimation of the cointegrating vector. The Johansen procedure also provides
a method of determining the number of unique cointegrating vectors r in a single equation context
although these tests have not been developed for a set of equations subject to cross-equation restrictions.
However, we did apply the Johansen procedure to our unrestricted cointegrating equations. For all four
equations we decisively reject the hypothesis of no cointegrating vectors (r = 0) on a likelihood ratio
test. The likelihood ratio tests for each of the four equations (with 5 percent critical value of 88.1) are
108.4, 105.8, 109.1, and 112.7, respectively. The test for a unique cointegrating vector (r < 1) was just
acceptable for two equations and just rejected for the remaining two. The likelihood ratio statistics for
r < | for equations (1)-(4) were 69.1, 70.2, 66.5, and 72.3 respectively (with 5 percent critical value of
70.0). Hence we can be fairly confident that we have at least one cointegrating vector for all four
equations but for equations (2) and (4) (in Table 2) the cointegrating vector may not be unique.
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TABLE 4
LONG-RUN IMPACT ON ASSET HOLDINGS (£M)

ga R, Ry R4 Wealth? MF
1. Ml 63 59 63 —59 19 270
2. TD -59 75 —96 —38 39 450
3. PSD —63 —-96 43 -10 2 24
4. FCD 59 —38 -10 107 40 278

Nores: The first four columns show the effect of a one percentage point change in ga (the annual inflation rate) and annual rates of return R;
(I = 2, 3, 4) on the hoidings of the ith asset Aa; (£m).

*Impact on asset holdings Aa; (£m) of £100m increase in wealth. To satisfy the budget constraint (Za; = W) this column sums to 100.
**The quarterly mean flow (£m) into asset i over the period 1982-86.

ments (Table 4, column 3) while M1 and TD are relatively strong substitutes with
FCD (Table 4, column 4).

All assets have positive wealth elasticities (Table 3, final column). An increase in
the level of wealth of £100 m leads to an increase in M1 of £19m, TD by £39m,
PSD by £2m, and FCD by £40m [based on mean shares; see equation (4a)]. The
high wealth elasticity for FCD of 2.4 reflects in part the increasing attractiveness of
such assets after the ending of exchange controls in 1979.

Short-Run Equations (Table 5)

The short-run equations are estimated by 3SLS treating the AIDS prices and
wealth as endogenous. The instruments used are two lagged values (z — 1, r — 2) of
all AIDS prices, wealth, and real total final expenditure and two lags of the three-
month Eurodollar rate. Drawing on (2) and (6), the short-run equations may be
represented as follows:

As, = CAlnp, + KAIn(W*/P*), + L(s — s%),_, (10)
TABLE 5
SHORT-RUN PRICE, AND ADJUSTMENT COEFFICIENTS, HOMOGENEITY AND SYMMETRY IMPOSED
5A. Price Matrix C

Ag Alnp, Alnp, Alnp,
As, (MI) 0" 0* 0" 0"
As, (TD) 0" —-1.18 (2.1) 0.18 (0.9) 1.0 2.1
As; (PSL) 0" 0.18 -0.45 (1.7) 0.27 (1.1)
As, (FCD) 0" 1.0 0.27 -1.27 (2.5)
5B. Adjustment Matrix L
Lagged Disequilibria Diagnostics
(52 = 53)—) (s3 = s3)—) (54 = s3)—) R2 BP(I)t BP(8)

As, (MI) 0.81 4.5) 0.79 2.2) 0.52 (2.8) 0.25 0.1 7.5
As, (TD) -0.81 (4.5) —0.93 (2.3) —0.26 (1.3) 0.54 0.3 15.7
As; (PSL) 0* —-0.45(2.2) 0* 0.36 0.2 11.2
As, (FCD) 0" 0.59 (1.6) —0.26 (1.8) 0.37 0.1 15.3

NotEs: An asterisk * indicates the coefficient has been constrained.
*BP (k) is the Box-Pierce statistic for serial correlation of order I to k. Under the null of no serial correlation it is asymptotically distributed
as central chi-squared with k degrees of freedom. Critical values at 5 percent significance level are x2(1) = 3.8, x2(8) = 15.5.
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where C, K, and L are suitably dimensioned matrices of short-run parameters.

The main results (see Table 5) are as follows: Homogeneity and symmetry on the
short-run price matrix (C) are imposed (Table 5A), and are not rejected (at a S
percent significance level) on a Wald test (W(3) = 3.9, x2 = 7.8; W(6) = 13.5,
x2 = 21.0). All own-rate coefficients are correctly signed (that is, negative) and
larger than the cross-rate effects. In the short run, TD, PSD, and FCD are
substitutes.

Statistically, the first row and column of the C matrix could be constrained to
zero. (The Wald test is W(3) = 0.8, x2 = 7.8.) This implies no short-run impact of
prices on M1 and no independent short-run effect on asset shares from changes in
inflation. The short-run wealth effects can be constrained to zero (W(3) = 1.2)
implying a short-run wealth elasticity of unity for all assets.

The adjustment matrix L is shown in Table 5B. All diagonal elements are nega-
tive indicating that excess holdings of asset i leads to a fall in the share of asset i in
the subsequent period. The three zero restrictions on the L matrix are not rejected
(W(@3) = 1.7, x2 = 7.8). The eigenvalues of the (augmented) L matrix have “real
parts” —0.19, 0.55, 0.74, indicating a convergent response after a one-quarter lag.

Considering that the equations are explaining changes in asset shares the R?
(Table 5B) are reasonable. The Box-Pierce statistics indicate that there is not an
acute problem of serial correlation (although the equation for TD may have some
negative second-order serial correlation). The interdependent error feedback for-
mulation therefore appears to provide a data coherent (Hendry, Pagan, and Sargan
1984) dynamic model.

Tests of long-run symmetry, homogeneity and homotheticity using only the first-
stage cointegrating regressions are not yet available for a system of equations [but
see Johansen (1988) and West (1988) in a single-equation framework] as the usual ¢
and F-statistics do not apply. We therefore tested these long-run parameter re-
strictions in a “general” unrestricted ADL model (see Engle and Granger 1987)
estimated by 3SLS [see equation (7)]. The Wald test for long-run homotheticity
[that is, B, = 0, (i = 1, 2, 3); see equation (2)] indicates rejection: W(3) = 9.0,
(x2 = 7.8). Long-run symmetry (and homogeneity) is not rejected: W(12) = 5.9,
(x2 = 12.6). The test for long-run symmetry (and homogeneity), and the other
restrictions on the parameters in Table 2 are accepted on a Wald test (W(15) = 6.3,
X2 = 25) and on a QLR test (QLR(15) = 7.6).

Dropping the last four and eight data points yields no qualitative changes in
the short-run parameters and the equation easily passes (our Wald systems ana-
logue to) the Salkever test for the 1985.1-1985.1V and 1985.1-1986.1V periods
(W(12) = 6.1, W(24) = 23.0, respectively, x2(12) = 21.0, x2(24) = 36.4), indicat-
ing parameter stability. (There is only one z-statistic on the dummy variables in
excess of 1.1, namely, for 1986.11 in the TD equation, r = 2.5). We can test our EFE
against a first-difference model by testing that all the (independent) elements of the
adjustment matrix L [equation (11)] are zero: the first-difference model is easily
rejected (W(9) = 56.6, x2 = 16.9). The static model is rejected since it has severe
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first-order serial correlation (see BP(1) statistics, Table 2) which is indicative of
misspecified dynamics.®

5. SUMMARY

Within a systems framework we find that the company sector’s demand for liquid
assets depends on movements in relative prices, and these responses are plausible
on a priori grounds. Our asset demand system is estimated using the Granger-Engle
two-step procedure. This has the advantage of enabling a general-to-specific search
over the short-run dynamics after establishing theoretically acceptable long-run co-
integrating equations. In a system with a large number of potential parameters to be
estimated, this is a major practical advantage. However, one cannot “get something
for nothing™ and in small samples the cointegrating vector may be biased (and not
unique). The success of this approach is to be judged partly against alternative
systems modeling procedures (see, for example, Bewley 1979; Anderson and Blun-
dell 1983; Owen 1986; Barr and Cuthbertson 1989) and on how well the system fits
the data and conforms to theoretical priors. While the fit is no doubt not as good as
could be found by an equation-by-equation general-to-specific search procedure,
nevertheless, this is to be weighed against the insights obtained by considering a
coherent theoretical model based on the axioms of rational choice. Given the limited
data set available we feel the methodology has yielded reasonable results and that
the method could be usefully applied in modeling other sectors and systems of
equations.
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